Trap Avoidance in Local Search Using Pseudo-Conflict Learning

نویسندگان

  • Duc Nghia Pham
  • Thach-Thao Duong
  • Abdul Sattar
چکیده

A key challenge in developing efficient local search solvers is to effectively minimise search stagnation (i.e. avoiding traps or local minima). A majority of the state-of-the-art local search solvers perform random and/or Novelty-based walks to overcome search stagnation. Although such strategies are effective in diversifying a search from its current local minimum, they do not actively prevent the search from visiting previously encountered local minima. In this paper, we propose a new preventative strategy to effectively minimise search stagnation using pseudo-conflict learning. We define a pseudo-conflict as a derived path from the search trajectory that leads to a local minimum. We then introduce a new variable selection scheme that penalises variables causing those pseudo-conflicts. Our experimental results show that the new preventative approach significantly improves the performance of local search solvers on a wide range of structured and random benchmarks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The long way from CDClL

Current SAT solvers are powerful enough to be used as engines in real applications. Those applications made the success of a special kind of SAT solvers, namely Conflict Driven Clause Learning SAT solvers (CDClL for short), developed initially by Joao Marques Silva with GRASP [8], and popularized by the SAT solver Chaff [9]. Despite SAT being a NP-complete problem in theory, it might look tract...

متن کامل

Trap escape for local search by backtracking and conflict reverse

This paper presents an efficient trap escape strategy in stochastic local search for Satisfiability. The proposed method aims to enhance local search by providing an alternative local minima escaping strategy. Our variable selection scheme provides a novel local minima escaping mechanism to explore new solution areas. Conflict variables are hypothesized as variables recently selected near local...

متن کامل

Avoiding Middle-income Trap in Muslim Majority Countries: The Effect of Total Factor Productivity, Human Capital, and Age Dependency Ratio

    In 2010, the World Bank categorized countries in per capita gross domestic product in terms of purchasing power parity (at constant 1990 prices) in three categories: low, middle (lower and upper) and high income. If a country caught at least 28 years in lower middle income level and at least 14 years caught in upper middle-income level, then they are trapped in lower middle and upper middle...

متن کامل

Tabu-KM: A Hybrid Clustering Algorithm Based on Tabu Search Approach

  The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the ...

متن کامل

Integrating Conflict Driven Clause Learning to Local Search

This article introduces SATHYS (SAT HYbrid Solver), a novel hybrid approach for propositional satisfiability. It combines local search and conflict driven clause learning (CDCL) scheme. Each time the local search part reaches a local minimum, the CDCL is launched. For SAT problems it behaves like a tabu list, whereas for UNSAT ones, the CDCL part tries to focus on minimum unsatisfiable sub-form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012